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Marginal Fermi liquid was originally introduced as a phenomenological description of the cuprates in a part
of the metallic doping range which appears to be governed by fluctuations due to a quantum-critical point. An
essential result due to the form of the assumed fluctuation spectra is that the large inelastic quasiparticle
relaxation rate near the Fermi surface is proportional to the energy measured from the chemical potential,
�i

−1��. We present a microscopic long-wavelength derivation of the hydrodynamic properties in such a situ-
ation by an extension of the procedure that Eliashberg used for the derivation of the hydrodynamic properties
of a Landau-Fermi liquid. In particular, the density-density and the current-current correlations and the relation
between the two are derived, and the connection to microscopic calculations of the frequency dependence of
the optical conductivity with an additional Fermi-liquid correction factor shown to follow. The method used
here may be necessary, quite generally, for the correct hydrodynamic theory for any problem of quantum-
critical fluctuations in fermions.
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I. INTRODUCTION

It is necessary for the success of the conventional Fermi-
liquid description1 that the decay rate for quasiparticles close
to Fermi surface is small compared to the energy of the qua-
siparticle, �−1��. This is followed in conventional metals
where the inelastic collision rate for quasiparticles near the
Fermi surface due to electron-electron interactions leads to
an energy relaxation via creation of particle-hole pair with a
rate �i

−1��2 /�F. On the one hand, this ensures that Landau
quasiparticles are well defined close to the Fermi surface, on
the other, in this situation transport phenomena are domi-
nated by other sources of scattering, such as lattice disorder.
But in the original Landau–Fermi-liquid system, liquid He3,
there is no other scattering process to mask the He-He atom
collision rate in the very low-frequency limit. As pointed out
by Eliashberg,2 the microscopic derivation of the Fermi-
liquid state has to be modified from the simpler procedure
used outside this regime if static or ultralow frequency or
hydrodynamic ���i

−1 phenomena are to be described cor-
rectly. For liquid He3 such modification was devised by
Eliashberg for analysis of the first sound in He3 which, by its
nature, is an ultralow frequency phenomenon.

The metallic state of the copper oxide in a funnel-shaped
region emanating from a point at doping x=xc at T=0 has
unusual transport properties which appear to be governed by
fluctuations due to a quantum-critical point. A phenomeno-
logical spectral function for the fluctuations was given in
Ref. 3 which leads to the concept of the marginal Fermi
liquid �MFL�. These fluctuations have a scale-invariant sin-
gular low energy form but a smooth momentum dependence
as for spatially local fluctuations. In the MFL, the decay rate
of the single-particle excitations and their energy and mo-
mentum relaxation rate are all ��, i.e., the energy of the
excitation itself. The theory explained the observed unusual
temperature and frequency dependence of the transport prop-
erties such as resistivity and optical conductivity and Hall
effect.4 Predictions of the phenomenology for the fluctua-
tions moreover were satisfied in the long-wavelength limit in

Raman-scattering experiments and for the single-particle
spectra in angle resolved photoemission �ARPES�
experiments.5–8

The relaxation rates �� imply that in copper-oxide metals
in the quantum-critical or MFL regime, every hydrodynamic
transport phenomena is in the “ultralow” frequency regime
and a derivation of the hydrodynamic properties similar to
the one designed by Eliashberg for the Fermi liquid is re-
quired. This is necessary in order to formally prove the va-
lidity of the simple calculations of such properties3,9 which
agree with experiments. It should be noted that a hydrody-
namic form for density-density correlation function in a
MFL obeying the continuity equation was also suggested.10

It is important to show that this form is not an independent
assumption but follows from the original assumption of a
local quantum-critical spectra. In this paper, we follow an
extension of the Eliashberg theory to achieve these goals.
The locality in the quantum-critical fluctuation spectra of the
cuprates makes such an extension relatively easy. The con-
sistent derivation of the hydrodynamic properties in more
general quantum-critical problems11 may require further de-
velopments of the methods used here.

The results of this paper are independent of the micro-
scopic underpinnings of the quantum-critical point and the
quantum-critical fluctuations and their coupling to fermions
in the cuprates. For the interested reader, we mention that the
fluctuations have been recently derived as the fluctuations �of
the flux variables�12 due to the quantum-critical point of a
loop-current order predicted13 and by now observed in three
different families of cuprates.14 The coupling function of the
fluctuation to the fermions has also been determined.15

II. PARTICLE-HOLE LADDER IN MARGINAL FERMI
LIQUID

We wish to describe the transport phenomena in MFL
system consistently in terms of the particle-hole ladder in a
manner similar to Fermi-liquid description of conventional
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metal. Particle-hole ladder describes multiple rescattering of
the particle-hole pairs and is the essential mathematical ob-
ject in the two-particle correlation functions �density-density,
current-current, etc.� which determine transport properties of
fermions. It has a singular dependence on the order of limits
�, q→0 which is dictated by the conservation laws. To be
specific, we consider the density-density correlation function
�����,q. Particle number conservation requires that density
correlation function vanishes in the limit limq→0�����,q=0.
In the opposite limit it equals the compressibility
lim�→0�����,q=dn /d� and is finite. Direct generalization of
the microscopic Fermi-liquid calculation to account for in-
elastic processes fails to produce a function that meets these
constraints at �, qvF	�i

−1 because dynamic nature of the
interaction amplitudes is ignored. We now discuss in detail
the technical steps to show that conservation laws are indeed
obeyed by a MFL.

It is necessary for us to specify only that the quantum-
critical fluctuations in a MFL are described by a correlation
function,12

Im 
R�q,�� = �− 
0 sgn � , ��� � �0

0, ��� � �0,
�

Re 
��� = − 
0
2

�
ln

�0

���
. �1�

In cuprates the upper cutoff at �0 appears to be sharp enough
to have observable consequences �see Ref 7�. In this paper
we will discuss only properties at T=0. At zero temperature
the spectral weight Im 
R�q ,�� of the local fluctuations ex-
tends all the way from the upper cutoff �0 to the zero energy.
In cuprates the upper cutoff �0�0.5 eV is few times smaller
than �F. The inelastic decay rate of fermions is controlled by
emission or absorption of such local fluctuation. The fact that
the mode is local, i.e., its correlation function 
�� ,q� inde-
pendent of q, facilitates our analysis. At zero temperature the
quasiparticle self-energy is given by

ImΣR(ε) = �� ��
��
�� � � 	


��
��� �� = γ2ν

∫ ε

0

dω ImχR(ω)

= −g

⎧⎨
⎩
|ε|, |ε| ≪ ω0

ω0, |ε| ≫ ω0

.

�2�

Here  is a coupling constant for the interaction between
fermions and the fluctuations.16 � is the density of states for
one spin species. We have introduced dimensionless cou-
pling constant g=�
02; in cuprates g�1. Owing to the fact
that the upper energy cutoff �0 of the local fluctuations is
smaller than Fermi energy, this calculation is in fact self
consistent, i.e., the same answer to order �0 /EF is obtained if
one uses full Green’s function GR�� , p�=1 / 	�−��p�+�
−�R���
 in the intermediate section. The real part Re �R���
follows from Kramers-Kronig relation. For ���0 �this is
enough for our purposes as we consider physics close to the
Fermi surface� we find

Re �R�� � �0� = − g
2

�
�ln

�0

���
+ 1�� . �3�

Behavior of ���� at and around ���0 has a direct experi-
mental consequence6 as is discussed in Ref. 7. As a result of
singular form of the self-energy, the single-particle Green’s
function does not have a simple pole anymore.

In calculation of two-particle correlation functions within
microscopic Fermi-liquid formalism one distinguishes dy-
namic and static parts, �����,q

tot = �����,q
dyn+ �����,q

stat. The static
part, �����,q

stat = lim�/q→0�����,q
tot , does not have significant de-

pendence on �, q near the Fermi surface, �����,q
stat

= lim�→0�����,q
tot =dn /d�. The singular behavior of �����,q

tot

are inherited by the dynamic part �����,q
dyn. Indeed, from its

definition, �����,q
dyn vanishes in the limit � /q→0, i.e.,

lim�→0�����,q
dyn=0; in the opposite limit it is finite

lim
q→0

�����,q
dyn=−dn /d�. Physical motivation behind separation

into dynamic and static parts is that �����,q
dyn gets its contribu-

tion from excitations close to the Fermi surface and can be
analyzed in terms of quasiparticles. For correlation functions
of conserved quantities the static part can be determined
from the Ward identity �see, e.g., Refs. 1, 17, and 18�.

We use the temperature technique1 to calculate the density
correlation function. We replace summation over frequency
in Eq. �5� with integrals on the real axis.2 General Matsubara
correlation functions consist of several analytic pieces con-
nected along branch cuts in the complex plane of its energy
arguments. A discontinuity across the branch cut has the di-
rect physical meaning of a spectral weight related to the par-
ticular physical excitation channel. For instance, the single-
particle Green’s function consists of two analytic pieces,
GR��� and GA���, connected along the real axis, Im �=0, in
the complex-� plane; the spectral weight GR���−GA���
=2 Im GR��� describes fermion quasiparticles. Analytic
structure of 
��� is similar. The particle-hole ladder
���1 ,�2 ;��, a function of three energy variables, can simi-
larly be splitted into several analytic pieces connected along
branch cuts. Within this formalism understanding analytic
structure of ���1 ,�2 ;�� is crucial in capturing the singular
contribution to the particle-hole ladder.

The dynamic part of the density correlation function is
given by

〈ρρ〉dyn
ω,q =

���
��

�
��

iε+iω

� �

iε

���

��
� +

���
��

�
� �

iε1+iω

Γ

� �
iε2+iω

� �

iε1

� �

iε2

���

��
�

�4�

where vertex ���1 ,�2 ;�� �the particle-hole ladder� describes
multiple rescattering of particle-hole pair

��
iε1+iω

Γ

� �
iε2+iω

� �

iε1

� �

iε2

=
� �

iε1+iω
� �

iε2+iω

� �

iε1

� �

iε2

+
� �

iε1+iω

Γ

� �
iε+iω

� �
iε2+iω

� �

iε1

� �

iε
� �

iε2

.
�5�

Here a pair of horizontal lines describes a free propagation of
particle-hole pair. The rescattering is induced by the elemen-
tary vertex represented by narrow rectangle. It contains all
processes that cannot be separated in two independent pieces
by cutting a particle and a hole line.
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The retarded correlation function �����,q
dyn is determined by

analytic continuation from upper half of the complex �
plane, �n�0. Mathematical representation of the fact that
�����,q

dyn gets its contribution from quasiparticles near the
Fermi surface is that particle-hole sections in Eq. �4� are
restricted to the region �n	0 and �n+�n�0. The analytic
continuation of two Green’s functions in the particle-hole
section �any part in the diagram where it can be cut into two
by cutting a particle and a hole line� from the region �n	0
and �n+�n�0 to the real axis defines the dynamic particle-
hole section �RA section� in which the upper fermion line is
GR and the lower line is GA. We define function SR by

2πiνSR(ε; ω, q)
��

iε+iω

��

iε

=

�
d2p

(2 )2
GR

p+q
(ε + ω)GA

p
(ε)

=

�6�

where the second line is valid in the limit qvF��F. In our
analysis of the ladder 	Eq. �5�
 we choose to describe the
elementary vertex in terms of the amplitude �k �see Ref. 1�;
in this case all intermediate particle-hole sections are RA
sections given by Eq. �6�.

In MFL system local fluctuations make a singular contri-
bution to the amplitude �k. In order to single out the singular
part of the particle-hole ladder we separate the singular and
nonsingular parts of the elementary vertex 	the thin rectangle
in Eq. �5�


�� ��

�� ��
=

��

��
��

��

�� ��
+

�� .
.
. .

.

.

��������
�� ��

.
�7�

The nonsingular contributions to the amplitude �k, the sec-
ond term in this equation, account for all processes that do
not lead to sharp dependences near the Fermi surface; these
include nonsingular exchange by local fluctuation, such as

�� .
.
. .

.

.

��������
�� ��

=
��

��
��

��

��

��

��
�� ��

��
+

��

��
��
�� ��

��
��

�� �� ��
+

�� ����
�� �� ��

��

��
��
�� ��

�� ��
+ · · ·

�8�

as well as direct electron-electron interaction processes. In
the zero harmonic spin-symmetric channel we describe the
sum of all such contributions to �k by Landau parameter
B0=���k�; here averaging �¯� is over the Fermi surface to
give zero harmonic. In phenomenological calculations one
typically uses the amplitude �� which in the zero harmonic
spin-singlet channel is determined by Landau parameter F0

s .
The parameter B0 is related to F0

s through the relation
1+B0=1 / �1+F0

s�. The role of the nonsingular part of the
elementary vertex is to introduce multiplicative renormaliza-
tions which are typical for any Fermi-liquid system. Let us
comment on why processes in Eq. �8� do not lead to singular
contributions in �k. The feature they all share is presence of
additional frequency integration which is not restricted to the
vicinity of the Fermi surface. Such additional integration
smears the discontinuity of the correlation function of the
local fluctuation. In addition, the logarithmic factor in Eq. �1�
is not effective here because due to additional integration the

typical frequency carried by local fluctuation is not small.
The singular contribution to the elementary vertex is

given by the first term in Eq. �7�. It represents a particle-hole
rescattering via exchange of a single local fluctuation. In
view of Eq. �7� we make a partial resummation in Eq. �4�,

〈ρρ〉dyn
ω,q =

���
��

�

[
��

iε+iω

� �

iε

... +
� � .
.
. .

.

.

� �������
� � � �

... ... +
� � .
.
. .

.

.

� � .
.
. .

.

.

� �

� � � � � �

������
������... ... ... + · · ·

]
���

��
�

�9�
The particle-hole ladder breaks into a sequence of singular
segments �dotted sections in this equation� connected by
nonsingular amplitude B0,

��

��

... =
� �

� �
+

� �

Γs

� �

� � � �
.

�10�

Equation �10� defines the singular vertex �s��1 ,�2 ;�� which
is a result of multiple rescattering with singular elementary
vertex only,

��
iε1+iω

Γs

� �
iε2+iω

� �

iε1

� �

iε2

=
� �

iε1+iω

� �
� �

� �
iε2+iω

� �

iε1

� �

iε2

+
� �

iε1+iω

Γs

� �
iε+iω

� �
� �

� �
iε2+iω

� �

iε1

� �

iε
� �

iε2

.
�11�

Frequency sums in the successive dotted sections in Eq. �9�
are decoupled since they are separated by nonsingular ampli-
tude B0. In contrast, the frequency summations in successive
sections in ladder equation for singular vertex 	Eq. �11�
 are
coupled because the local fluctuations introduce essential de-
pendence on �1−�2. Here the singular behavior of 
��� 	see
Eq. �1�
 translates into essential dependence on �1 ,�2. We
emphasize that singular dependence of �s on �1 ,�2 is purely
dynamic, i.e., it is not associated with or results from any
peculiar momentum dependence. Equation �11� completes
identification of the singular vertex in the particle-hole lad-
der. To analyze Eq. �11� we have to perform analytic con-
tinuation to the real axis from the frequency interval i�1,2
	0 and i�1,2+ i��0. This requires analysis of the analytic
structure of the vertex �s��1 ,�2 ;��.

In the complex plane of two fermion frequencies, �1 ,�2,
the analytic structure of the vertex �s��1 ,�2 ;�� can be illus-
trated by a diagram2

−ω
��

Imε1I
II

�����������������
−ω

��
Imε2

�12�

Each line represents a branch cut connecting different ana-
lytic pieces.19 The horizontal and vertical lines indicate the
branch cuts that are already present in the external lines,
Im �1,2=0 and Im �1,2+�=0. The diagonal line in Eq. �12�,
represents the discontinuity at Im��1−�2�=0 in �s��1 ,�2 ;��
�and the corresponding singularity in the interaction ampli-
tude �k�; it is induced by the discontinuity in 
��� at Im �
=0. In the mathematical language of temperature technique
the branch cut at Im �1=Im �2 �and associated singularity�
represents the physical effect of multiple rescattering via the
exchange of local fluctuations.
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The analytic continuation of �s��1 ,�2 ;�� to the real axis
Im �1,2=0 from the frequency interval i�1,2	0 and i�1,2
+ i��0 is not unique as a result of the branch cut at Im �1
−Im �2=0. On the real axis the singular vertex �s is deter-
mined by two functions �I,II depending on the order in which
Im �1,2 are sent to zero,

��

ΓII

��

�� ��
= Γs(Imε1 > Imε2; Imε1,2 → −0) ,

��

ΓI

��

�� ��
= Γs(Imε1 < Imε2; Imε1,2 → −0) . �13�

Making analytic continuation to the real axis in Eq. �11� we
obtain coupled equations satisfied by functions �II,I,

��
ε1+ω

ΓII

��
ε2+ω

��
ε1

��
ε2

=
��

R��
��

��

�� ��
−

∫
dε

2

[
− tanh ε

2T

��

I

��
ε+ω

R��
��

��

�� ��
ε

��
+ coth

ε−ε1
2T

��

I−II

��

R��
��

��

�� �� ��

+ coth
ε−ε2
2T

��

II

��

R−A��
��

��

�� �� ��
+ tanh ε+ω

2T

��

II

��

A��
��

��

�� �� ��

]
,

��
ε1+ω

ΓI

��
ε2+ω

��
ε1

��
ε2

=
��

A��
��

��

�� ��
−

∫
dε

2

×
[
− tanh ε

2T

��

I

��
ε+ω

R��
��

��

�� ��
ε

��
+ coth

ε−ε1
2T

��

I−II

��

A��
��

��

�� �� ��

+ coth
ε−ε2
2T

��

I

��

R−A��
��

��

�� �� ��
+ tanh ε+ω

2T

��

II

��

A��
��

��

�� �� ��

]

×

�14�
Each line or vertex in this equation is assigned a particular
analytic piece continued to the real axis as indicated; fre-
quency and momenta are assigned here in the same way as in
Eq. �11� with subsequent replacement i�→�. In all particle-
hole sections, upper and lower fermion lines are GR and GA,
respectively. To proceed we first have to make sure that fre-
quency integration is restricted to finite interval; only then
we are allowed to perform a momentum integration in the
intermediate section 	see Eq. �6�
. This is achieved by rewrit-
ing Eq. �14� in terms of ��=���II��I� /2. Indeed, all hyper-
bolic functions will enter in the combinations such as
d�	tanh�+�

2 −tanh�
2 
 /2, etc. In particular, at zero tempera-

ture we use the following identities:

� d�

2
�tanh

� + �

2T
− tanh

�

2T
�¯ → �

−�

0

d� ¯ ,

� d�

2
�− tanh

� + �

2T
− tanh

�

2T
+ 2 coth

� − �2

2T
�¯ →�

−�

0

d� sgn�� − �2� ¯ ,

� d�

2
�coth

� − �2

2T
− coth

� − �1

2T
�¯ → sgn��1 − �2��

min �1,�2

max �1,�2

d� ¯ ,

where both �1 ,�2 are assumed to belong to the interval
	−� ,0
. Combining Eq. �14�, performing momentum inte-

grations, setting temperature to zero, and using above iden-
tities, we obtain equations satisfied by ��,

�+��1,�2� = 
+��1 − �2� − �
−�

0

d�	�+��1,��S���sgn�� − �2�

�
−�� − �2� + sgn��1 − ���−��1,��S���

�
+�� − �2� + �+��1,��S���
+�� − �2�

− �−��1,��S���
−�� − �2�


�−��1,�2� = 
−��1 − �2� − 2 sgn��1 − �2��
min �1,�2

max �1,�2

�d��−��1,��S���
−�� − �2� , �15�

where 
�=�2�
R�
A� /2. With this definition, 
� absorbs
the factor 2 which accompanies each wiggly line in the
diagram as well as the factor of density of states which ap-
pears due to momentum summation in the particle-hole sec-
tion 	see Eq. �6�
. Note that both �� and 
� are dimension-
less while S��� has dimension of inverse energy. We suppress
� ,q arguments in all functions in Eq. �15�. Here and below
we omit index R in the dynamic particle-hole section
SR�� ;� ,q�.

Finally, we decouple the two equations 	Eq. �15�
 in terms
of functions K� defined as

K+��1,�2� = �+��1,�2� + sgn��1 − �2��−��1,�2� ,

K−��1,�2� = sgn��1 − �2��−��1,�2� . �16�

To describe the local fluctuation we introduce functions X�,

X+��1 − �2� = 
+��1 − �2� + sgn��1 − �2�
−��1,�2�

= − g
2

�
ln

�0

��1 − �2�
− ig ,

X−��1 − �2� = sgn��1 − �2�
−��1,�2� = − ig , �17�

where we have used a form of a singular correlation 	Eq.
�1�
, valid at ��1−�2�	�0. Equations for K� have the form

K+��1,�2� = X+��1 − �2� − �
−�

0

d�K+��1,��S���X+�� − �2� ,

�18�

K−��1,�2� = X−��1 − �2� − 2�
min��1,�2�

max��1,�2�

�d�K−��1,��S���X−�� − �2� . �19�

The second equation follows immediately from the second
equation in Eq. �15� after multiplying both sides by sgn��1
−�2� and observing that under the integral sgn��1−��sgn��
−�2� is always positive �and equal 1�. To obtain Eq. �18� we
observe that expression under the integral in the first equa-
tion in Eq. �15� can be rewritten as K+SX+−�−S
−−K−SX−

�we suppressed all function arguments�. Let us look closely
at the last two terms here, −�

0 	−1−sgn��1−��sgn��
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−�2�
�−S
−. The square bracket vanishes for � outside the
interval �1 ,�2, so that effectively the limits of the integral are
	min��1 ,�2�¯max��1 ,�2�
. For � within this interval the
square bracket equals −2. Therefore the last two terms
amount to −2min��1,�2�

max��1,�2��−S
−. In the equation for K+ this
expression cancels identically the integral term 	multiplied
by sign��1−�2�
 in Eq. �15�.

III. DENSITY-DENSITY CORRELATION FUNCTION IN
MFL

We first demonstrate that the singular vertex determined
by Eq. �15� ensures particle conservation. We calculate the
density correlation function and check that

lim
q→0

�����,q
tot = 0. �20�

As discussed above, in terms of dynamic part of the correla-
tion function, �����,q

dyn, this condition takes the form
limq→0�����,q

dyn=const. We sum the series in Eq. �9� and ob-
tain

�����,q
dyn = 2��1 + B0�2 Z��,q�

1 − B0Z��,q�
, �21�

where the factor 2 is due to spin summation. The factor �1
+B0�2 comes from the external vertices �“triangles”� in Eq.
�9�; these include only nonsingular renormalizations. The
function Z�� ,q� represents the “dotted” section 	Eq. �10�
,
summed over fermion frequency

Z��,q� = − �
−�

0

d�S��� + �
−�

0

d�1d�2S��1�K+��1,�2�S��2� .

�22�

We suppressed � ,q arguments on the right-hand side. Note
that vertex �s is represented here by the function K+ only.

Let us make the following comment. Ignoring contribu-
tion from the branch cut at Im��1−�2�=0 roughly corre-
sponds to ignoring �− and 
− everywhere in Eq. �18�, i.e., we
replace K+ and X+ with �+ and 
+, respectively. We obtain a
ladder equation �+=
+−��+S
+ 	where S�� ,q� is given by
Eq. �6� and one has to set the self-energy to zero for consis-
tency
. This equation introduces static �logarithmic� renor-
malizations due to rescattering by 
+ and leads to density
correlation function that does not satisfy particle conserva-
tion condition. Proper solution of Eq. �18� cures both prob-
lems: particle conservation is restored and logarithmic renor-
malizations disappear. This supports the statement made in
Sec. I that in consistent microscopic description of MFL one
has to consider the dynamic effect of local fluctuation in the
vertex �s when their effect has been accounted for in fermion
self-energy.

Physically sensible approximation to solution of Eq. �18�,
i.e., the one that ensures particle conservation, can be de-
vised as follows. First observe that in the interval �−�	�
	0� �i� the imaginary part of �R��+��−�A��� is indepen-
dent of � for marginal self-energy and �ii� its real part varies
only weakly. Point �ii� follows because Re ���� differs from

linear function �for which the statement would hold exactly�
only by a logarithmic factor. Therefore to logarithmic accu-
racy we can approximate r�� ;����R��+��−�A��� in the
interval −�	�	0 by a function that does not depend on �.
To be specific, we define

r��� � 	�R�� + �� − �A���
�=−�/2

= − ig� −
2g

�
�ln

2�0

���
+ 1�� . �23�

Within this approximation the weak � dependence of the
dynamic particle-hole section S�� ;� ,q� in the interval −�
	�	0 is ignored, i.e., we replace S�� ;� ,q� with

S�,q =� d�

2�

1

� − qvF cos � − r���
�24�

everywhere. With this, � integration can be performed in
Eqs. �18� and �22�; one has to use an identity −�

0 d�X+��
−���=�R��+���−�A���� which is satisfied for marginal
Fermi-liquid self-energy 	Eqs. �2� and �3�
 in an interval
−�	��	0. Finally, Eq. �18� reduces to an algebraic equa-
tion

K̃�,q
+ � �r��� − S�,qr���K̃�,q

+ , �25�

where K̃�,q
+ =−�

0 d�1d�2K�,q
+ ��1 ,�2�. Using solution of this

equation in Eq. �22� we obtain

Z��,q� � − �S�,q + S�,q
2 K̃�,q

+ = −
�S�,q

1 + S�,qr���
. �26�

To check the particle conservation condition Eq. �20� we
have to take the limit q=0 in Eq. �21�. In this limit the
particle-hole section S�� ,q→0��S0���=1 / 	�−r���
.
Combining Eqs. �21� and �26� we find

lim
q→0

�����,q
dyn = − 2��1 + B0� . �27�

This form of the density correlation function ensures particle
conservation because the right-hand side is real
�-independent constant.

Using ����tot= ����dyn+ ����static, we find �����,q
static=2��1

+B0�. Let us comment on this result. We find that in MFL the
compressibility acquires only nonsingular renormalizations,
dn /d�=2� / �1+F0

s�, where � is the quasiparticle density of
states and where the nonsingular Fermi-liquid amplitude F0

s

is related to B0 via 1+F0
s =1 / �1+B0�. This is to be contrasted

with the thermodynamic density of states that controls spe-
cific heat, =2� /z, which is enhanced by logarithmic factor
in 1 /z=1−d� /d�. Let us note that singular dynamics of qua-
siparticles near the Fermi surface cannot affect compressibil-
ity dn /d� on general grounds.20 Indeed, the shift of the
chemical potential only leads to a shift of the Fermi energy
and with it shift in all the physics that is “pinned” to it. This
leaves derivative dn /d� free of any singularity �see also dis-
cussion in Ref. 10�.

Since we now have conserving approximation for a
particle-hole ladder, we can calculate conductivity using
equation of continuity
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���� = lim
q→0

�

q2 Im�����,q
tot . �28�

Unlike previous discussion, we now have to keep the q de-
pendence in S�,q to lowest order in q. It follows from Eq.
�24� that

S�qvF � �� �
1

� − r��� + id���q2 , �29�

where we have introduced d���= i	�−r���
−1vF
2 /2 �see Ref.

21�. Substituting this in ����tot= ����dyn+ ����static and using
Eq. �25� we obtain

�����,q
tot �qvF�� � 2��1 + B0�2 d���q2

− i��1 + B0� + d���q2 .

�30�

We find

���� = 2��1 + B0�Re d��� = 2��1 + B0�
vF

2

2
Im

− 1

� − r���
.

�31�

This is equivalent to the result obtained with direct calcula-
tion of conductivity bubble3,9 	except for the “Fermi-liquid”

factor �1+B0�
 where vertex corrections were argued to be
zero because they are momentum independent while the ver-
tex coupling to the vector potential for calculation of con-
ductivity is the momentum vector. The results here are a
formal justification of such simplifications.

IV. CONCLUSIONS

In conclusion, we have demonstrated through microscopic
theory that conservation laws are obeyed by a marginal
Fermi liquid as well as provided a consistent theory of the
hydrodynamic transport properties. We expect that our ap-
proach is useful for other problems11 with singular low en-
ergy properties of interacting fermions.
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